Traditional Field Crops (Peace Corps, 1981, 283 p.) 
Appendices 
Appendix L  Important planting skill for extension workers 

Most extension workers need five basic planting skills:
1. How to calibrate a planter.2. How to calculate the probable final stand, given seed spacing and row width.
3. How to calculate the inrow seed spacing needed to provide a given population at various row widths.
4. How to determine the amount of seed needed for a given field size.
5. How to determine a farmer's actual plant population in the field Using a measuring tape.
The calculation of the final stand is accomplished by the following formula:
Plant population/ha = [100,000,000 cm² /ha ] / [seed spacing in the row in cm × row width in cm]
For example, if the row width is 40 cm and seeds are spaced 10 cm apart. the final stand, assuming 100 percent germination and no plant mortality, would have:
100,000,000 / 40 x 10 = 50,000 plants
Likewise if the crop is planted in hills the calculation made is:
Plant population/ha = [100,000,000 (cm²/ha) x number of seeds/hill] / row width (cm) x hill spacing (cm)
Thus planting in 50 cm width with 50 cm between hills and two seeds planted per hill yields:
100,000,000 x 2 / 50 x 50 = 80,000 plants/ha
The same formula can be used to calculate the inrow seed spacing needed to provide a given population at various row widths. For example, if an optimal population of 100,000 plants/ha is desired, then:
100,000 plants/ha = 100,000,000 / [row seed width × seed spacing (cm)
or:
row width x seed spacing = 1000 cm²
This spacing can be achieved using:
10 cm seedspacing in 100 cm row width,
20 cm seedspacing in 50 cm row width,
15 cm seedspacing in approx. 70 cm rows, etc.
Note again that the calculation does not account for losses due to poor germination or plant mortality. You may want to plant 15 or 20 percent more than the amount you wish to harvest in order to account for these probable losses.
You first need to know how many seeds of each crop are contained in a kilogram. The most accurate way of calculating this is to weigh out a 60 g sample of the seed and count it if you can find a reliable scale (i.e. at the post office or at a pharmacy). Multiplying the number by 10 will give the number of seeds per kilogram. Ot wise, you can use the table below as a rough guide:
Table 15 Number of Seeds per Kilogram
Maize 
17602860 
Sorghum 
26,40044,000 
Peanuts 
11001540 
Beans 
30003960 
Cowpeas 
39604040 
To find the kilograms of seed needed per hectare, simply
divide the number of seeds needed by the number of seeds/kg. Multiplying this
times the size of the field in hectares will give the total amount of seed
required.
When troubleshooting a farmer's field, it is usually valuable to check out his plant population, since this has an important influence on yield potential and response to fertilizer. This can be easily done by counting the plants in 510 randomly selected strips of row each equal to 1/1000th of a hectare.
Step 1: First determine the field's average row width by measuring the distance across 10 complete rows and then dividing by 10. Do this at several random locations to get a representative average.
Step 2: Refer to the 1/1000th hectare row length chart for the proper random selection procedure.
Step 3: Select at random five to ten row strips of the appropriate length and count the number of plants in each and record it.
Step 4: Multiply the average number of plants in the row strips by 1000 to yield the plant population per hectare.
How to Make A PreHarvest Yield Estimate
A preharvest yield estimate can be accurate to within 5 percent of the actual harvested yield if the correct procedure is used. When working with trial and demonstration plots, you should always take such a preharvest yield sample of both the test plot and the control plot. There is always the chance that the plots might be inadvertently harvested before the agreedupon time without the yields being measured. Preharvest yield sampling is also a quick way of estimating crop yields in farmers' fields.
General Principles Of Yield Sampling
1. Samples should be collected at random for various portions of
the field or plot. Do not purposely select samples from higher or
lowerproducing areas within the plot or your estimate may be very inaccurate A
random sampling pattern should be determined before you enter the field so you
will not be tempted to choose them by visual appearance.
2. Don't collect
yield samples more than one week before the actual harvest.
3. When taking
each sample, the area (or row length) to be harvested must be precisely
measured. Do not estimate' Remember that any error in the sample area size will
be magnified hundreds of times when converting the yield to a larger land unit
basis.
4. You must adjust the sample weights to account for factors like
excess moisture, damage, and foreign matter.
How to Take Samples and Estimate Yields
1. The Sampling Procedure
a. Number of samples: For plots less than 0.5 ha, take a minimum of five samples. For plots of over 0.5 ha, take between five and ten. If crop growth is not very uniform, take ten samples.b. Size of each sample: Take each sample from the samesized area or same amount of row length. Individual sample size should be between 2.5 and 5.0 square meters. For row crops, the area of a sample is determined by multiplying row length by row width. (Harvesting three meters of corn row planted in rows one meter wide will give you a sampling area of three square meters.) Alternatively, use a section of row length equal to 1/1000th of a hectare. This will make later math calculations simpler, and the 1/1000 ha row length can be taken from the following table.
Row Width 
1/1000th hectare Row Length 
50 cm 
20.00 m 
60 cm 
16.67 m 
70 cm 
14.28 m 
75 cm 
13.33 m 
80 cm 
12.50 m 
90 cm 
11.11 m 
100 cm 
10.00 m 
110 cm 
9.10 m 
c. Taking a random sample: Decide on the sampling pattern before entering the field, and do not deviate from it. To randomize, the field can be divided up into sections and each section given a number drawn from a hat. Or you can pick randomized starting points at the side of the field and then enter random distances from the starting point. A good system for row crops is to number the rows and select them at random, then select the distance into the row (field) at random. NOTE: Exclude three meters or four rows of perimeter from your sampling area along all four sides of the plot to ensure sampling from the heart of the plot.
2. Accuracy: Use a tape to measure each sampling area or row length. Use an accurate scale to record the total weight of the samples within one plot.
3. Handling the Samples: The samples should be harvested and processed according to local prevailing methods. If drying is required before shelling or threshing, be sure the location is secure and free from rodents or birds.
4. Weighing the Sample: Use an accurate portable scale. You do not need to weigh individual samples separately, but only the fatal collective sample from the plot. If you cannot find a good portable scale, have the grain weighed in town.
5. Checking Grade: Take a random sample of the collective sample and have it checked for moisture content and any other graded qualities if necessary. (Refer to the storage section in Chapter 7 for how to determine grain moisture content.)
6. Yield Calculations:
Size of total sample area = No of samples × size of individual sample areas
_{}
7. Correcting for Moisture: Yields are usually based on grain that is dry enough to store in shelled form (usually 1314 percent moisture content). If you base your estimates on the weight of a high moisture sample, you should revise the yield downward using this simple formula (otherwise, dry the grain first).
Grain weight after drying = [% dry matter before drying / % dry matter after drying] x original grain weight
Example: Suppose you weigh a collective sample of "wet" grain and then estimate the plot yield to be equal to 3500 kg/ha. A moisture test shows the sample has 22 percent moisture; what is the actual yield based on 13 percent moisture?
22% moisture = 78% dry matter,
13% moisture = 87% dry matter
78% / 87% x 3500 kg/ha = 3138 kg/ha yield based on 13% moisture
A Yield Estimate Example
Suppose you are taking a yield estimate on a farmer's maize plot which is slightly less than 0.5 hectare. The rows are planted 90cm apart, and you decide to take six samples, each consisting of 1/1000th hectare of row length. The collective weight of the shelled, dried maize is 18 kg. What is the estimated yield on a per hectare basis?
Solution:
area of collected sample = 6/1000ths of a hectare = 60 sq. meters
18 kg x [10000 sq.m (1 hectare) / 60 sq. meters] = 3000 kg/ha estimated yield