[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |

# 4 Certificate authentication

The most known authentication method of TLS are certificates.
The PKIX [*PKIX*] public key infrastructure is daily used by anyone
using a browser today. GnuTLS supports both
X.509 certificates [*PKIX*] and OpenPGP
certificates using a common API.

The key exchange algorithms supported by certificate authentication are shown in Table 4.1.

Key exchange | Description |
---|---|

RSA | The RSA algorithm is used to encrypt a key and send it to the peer. The certificate must allow the key to be used for encryption. |

RSA_EXPORT | The RSA algorithm is used to encrypt a key and send it to the peer. In the EXPORT algorithm, the server signs temporary RSA parameters of 512 bits — which are considered weak — and sends them to the client. |

DHE_RSA | The RSA algorithm is used to sign ephemeral Diffie-Hellman parameters which are sent to the peer. The key in the certificate must allow the key to be used for signing. Note that key exchange algorithms which use ephemeral Diffie-Hellman parameters, offer perfect forward secrecy. That means that even if the private key used for signing is compromised, it cannot be used to reveal past session data. |

ECDHE_RSA | The RSA algorithm is used to sign ephemeral elliptic curve Diffie-Hellman parameters which are sent to the peer. The key in the certificate must allow the key to be used for signing. It also offers perfect forward secrecy. That means that even if the private key used for signing is compromised, it cannot be used to reveal past session data. |

DHE_DSS | The DSA algorithm is used to sign ephemeral Diffie-Hellman parameters which are sent to the peer. The certificate must contain DSA parameters to use this key exchange algorithm. DSA is the algorithm of the Digital Signature Standard (DSS). |

ECDHE_ECDSA | The Elliptic curve DSA algorithm is used to sign ephemeral elliptic curve Diffie-Hellman parameters which are sent to the peer. The certificate must contain ECDSA parameters to use this key exchange algorithm. |

**Table 4.1: Supported key exchange algorithms.
**

4.1 X.509 certificates | ||

4.2 OpenPGP certificates | ||

4.3 Digital signatures |

[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |

This document was generated on *January 21, 2012* using *texi2html 5.0*.