| [ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
4.8.3 Hyperbolic functions
cl_R sinh (const cl_R& x)-
Returns
sinh(x). cl_N sinh (const cl_N& z)Returns
sinh(z). The range of the result is the entire complex plane.cl_R cosh (const cl_R& x)-
Returns
cosh(x). The range of the result is the intervalcosh(x) >= 1. cl_N cosh (const cl_N& z)Returns
cosh(z). The range of the result is the entire complex plane.struct cosh_sinh_t { cl_R cosh; cl_R sinh; };cosh_sinh_t cosh_sinh (const cl_R& x)-
Returns both
sinh(x)andcosh(x). This is more efficient than computing them separately. The relationcosh^2 - sinh^2 = 1will hold only approximately. cl_R tanh (const cl_R& x)cl_N tanh (const cl_N& x)Returns
tanh(x) = sinh(x)/cosh(x).cl_N asinh (const cl_N& z)-
Returns
arsinh(z). This is defined asarsinh(z) = log(z+sqrt(1+z^2))and satisfiesarsinh(-z) = -arsinh(z). The range of the result is the strip in the complex domain-pi/2 <= imagpart(arsinh(z)) <= pi/2, excluding the numbers withimagpart = -pi/2andrealpart > 0and the numbers withimagpart = pi/2andrealpart < 0. cl_N acosh (const cl_N& z)-
Returns
arcosh(z). This is defined asarcosh(z) = 2*log(sqrt((z+1)/2)+sqrt((z-1)/2)). The range of the result is the half-strip in the complex domain-pi < imagpart(arcosh(z)) <= pi, realpart(arcosh(z)) >= 0, excluding the numbers withrealpart = 0and-pi < imagpart < 0. cl_N atanh (const cl_N& z)-
Returns
artanh(z). This is defined asartanh(z) = (log(1+z)-log(1-z)) / 2and satisfiesartanh(-z) = -artanh(z). The range of the result is the strip in the complex domain-pi/2 <= imagpart(artanh(z)) <= pi/2, excluding the numbers withimagpart = -pi/2andrealpart <= 0and the numbers withimagpart = pi/2andrealpart >= 0.
| [ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
This document was generated on August 27, 2013 using texi2html 5.0.
